WINTER – 19EXAMINATION

Subject Name: Applied Electronics Model AnswerSubject Code:

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- For programming language papers, credit may be given to any other program based on equivalent concept. 7)

Q.	Sub				Answer		Ma	irking
Q. No.	Q. N.			Answer				ieme
NO.	Q. N.						501	icine
0.1		Attomat on	FIX /	E of the following			10-	Total
Q.1		Attempt an	іу ГІУ	E of the followin	ig:		Ma	arks
	a)	List the type	es of c	oupling used in l	BJT amplifier.		2M	[
	Ans:	Types of cou	upling	used in BJT ampl	ifier:		Ea	ch ½ M
			stance	capacitance (RC)	coupling			
				coupling				
				er coupling				
	1		ct coup		• 4]] • 6• /	C)		r
	b)	Compare sn	nall sig	gnal amplifier w	ith power amplifier(an	ly four)	2M	L
	Ans:	S	Sr.No	Parameters	Small signal	Power Amplifiers	An	y four
					Amplifiers		poi	ints:
		1	l	Amplification	It increases voltage	It increases power	eac	2h ½ M
				quantity	into high resistance	into low resistance		
					load. Hence small	load. Hence these		
					signal amplifiers are	amplifiers are also		
					also called as	called as large		
					voltage amplifiers.	signal amplifiers.		
		2	2	Current	High(typically 100)	Low(5 to 20)		
				Gain(β)				
		3	3	Input	Quite low	Very large		
				Resistance(R _i)				
		4	1	Output	High	low		

(Autonomous) (ISO/IEC - 2700

MAHARASHTI

				Impedance(R _o)			
			5	Physical size	Small	Large in size	
			6	Coupling	R-C coupling	Transformer	
						coupling	
			7	Power output	low	High	
	c)	State 1	four adv	vantages of negative	feedback used in feedba	ck amplifier.	2M
	Ans:	Advar	-	f negative feedback:	(Any Four)		Each ¹ / ₂ M
		i.		ion decreases			
		ii.		n output decreases			
		iii.		y of gain of amplifier	improves		
		iv.		ed as an amplifier.			
		v.	-	ng point is stabilized.			
		vi.			certain configuration and	l output resistance decreases	in
				configurations.			
	•	vii.		idth is increased			
	d)	State]	Barkhau	isen criteria of oscill	ation.		2M
	Ans:	Where	$A_V = g$	ain of an amplifier wi	thout feedback also calle	d open loop gain	1M
		$\beta A_V =$	= product	t of feedback fraction	and open loop gain. It is	called loop gain.	
		The B	Barkhaus	en criterion for the ge	neration of sustained osc	cillations. for positive feedbac	:k
		are:					
		1.	$\beta A = 1$				1M
		2.	Total p	hase shift should be 3	60° or 0°		
	e)	Differ	entiate j	positive feedback and	l negative feedback (for	ır points)	2M
	Ans:	S S	Sr. Pai	ameter	Positive feedback	Negative feedback	Any Four
		1	No.				points
			l Fee	edback signal	In phase with the input	180 ° out of phase	Each ½ M
				AUDACK SIgnal	signal.	with the input signal.	
					Signai.	with the input signal.	
		2	2 Ne	t input signal	Increases	Decreases	
			3 Ga	in	Increases	Decreases	
		4	4 No	ise Increases	Increases	Decreases	
		4	5 Sta	bility	Poor	Improved	
		6	5 Inp	out impedance	decreases	increases	
1	1			1	increases	decreases	
			7 Ou	tput impedance	meredses	deereases	
		5			Oscillators, Schmitt trigger	Amplifiers, bootstrapping	

MAHARASHTI

(Autonomous) (ISO/IEC - 2700

f)	State the need of tuned amplifier in electronic circuits.(four points)	2M
Ans:	(Note:Any two points can be given full marks) Need of tuned amplifier: i. Selects the desired radio frequency signal. ii. Amplifies the selected high or radiosignal to a suitable voltage level. iii. As a filter.	2M
g)	List the uses of heat sink (four points)	2M
Ans:	 Uses of heat sink: It is used to avoid thermal runaway in electronic circuits. Use to transfer heat generated by a mechanical or an electronic device to the surroundings. Use to optimize the heat exchange between component and surrounding by maximizing the contact surface between heat sink and air. Used to dissipate the amount of heat generated. 	Each point ¹ ⁄2 M

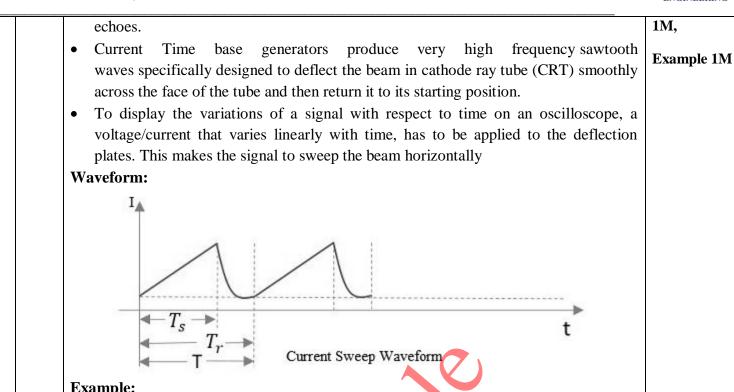
Q.2		Attempt any THREE of the following:	12-Total Marks
	a)	Explain the working principle of FET amplifier and list its two applications.	4M
	Ans:	Circuit diagram:	Circuit
			diagram:
			1 ½M
		Explanation:	1 ½M
		i. When small a.c. signal is applied to the gate, it produces variation in the gate to	1 72111
		source voltage. This produces variation in the drain current. As the gate to	
		source voltage increases, the drain current also increases. As the result of this	
		voltage drop across R_D also increases. This causes the drain voltage to	
		decreases.	
		ii. As the input voltage rises, gate to source voltage becomes less negative, it will increase the channel width and increase the level of drain current I _D .	
		iii. As the input voltage falls, it will decrease the channel width and decrease the	
		level of drain current I_D . Thus I_D varies sinusoidally above its Q point value.	
		iv. The drain to source voltage V_{DS} is given by $V_{DS} = V_{DD} - I_D R_D$	
		v. Therefore as I_D increases the voltage drop I_DR_D will also increase and voltage	
		V _{DS} will decrease.	
		vi. If ΔI_D is large for a small value of ΔV_{GS} ; the ΔV_{DS} will also be large and we get	
		amplification. Thus the AC output voltage V_{DS} is 180° out of phase with AC	

b)	i. ii. iv. v. vi. vi. Vii.	tions: (Any 2) Low noise amp Buffer amplifie Cascade amplifie Analog switch Multiplexer Chopper Current limiter re the perform k amplifiers.(f	olifier er Fier nance of voltage series and current series	s type of negative	1M (1/2) each	
Ans:	Sr.No	Parameters	voltage series negative feedback amplifiers	current series type negative feedback	, poin	t
	1	Block diagram	$ \begin{array}{c} + \\ + \\ v_{s} \\ - \\ - \\ v_{i} \\ + \\ v_{f} - \beta v_{a} \\ - \\ - \\ \end{array} \right) A = \frac{V_{a}}{V_{i}} + \\ V_{a} \\ + \\ V_{b} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	amplifiers	-1M	ı poin
	2	Gain	Decreases	Decreases		
	3	Output resistance	Decrease $Z_{if} = \frac{ZI}{1+\beta A}$	Increase $Z_{if}=Z_i(1+\beta A)$		
	4	Input resistance	Increases $Z_{if}=Z_i(1+\beta A)$	Increase $Z_{if}=Z_i(1+\beta A)$		
	5	Disortion	$\frac{\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$	Decrease		
c)			am of SMPS and state its working princi		4 M	<u> </u>
Ans:	Diagrar	n:			2M	

d)	Design a RC phase shift oscillator to generate the frequency of 500KHz.Assume suitable values for $R_1=R_2=R_3=R$ and $C_1=C_2=C_3=C$.Justifyyour answer.	4M
	from 20 kHz to 100 kHz. Since the power transistors are not operated in their active region, their operation results in low power dissipation. Thus, it is a two stage conversion. i.e. the input ac supply voltage is first rectified to dc and then the high-frequency switching section changes it back to ac. High frequency power transformer :-It isolates the circuit and steps-up or steps-down the voltage to the desired voltage level. The output of the transformer is the input of the second rectifier section, called the output rectifier section. Output rectifier : - This rectifier section is different from the first block of the rectifier in that the frequency of the voltage is very high. Therefore, the bridge configuration of this rectifier uses a high frequency diode such as a Schottky diode and the output ripple is naturally filtered because of the number of overlaps between each individual output pulse. Since the ripple is very small in the output voltage of the rectifier, a small capacitance value is required in the filter section. Control and feedback :- It provides a pulse width modulation(PWM) output signal. The PWM controller provides a duty-cycle that varies pulse by pulse to provide an accurate dc output voltage.	
	Working principle:- Rectifier and filter:- It converts the ac supply voltage to a pulsating dc, which is then filtered out to reduce the amount of ripple content. It uses the power diodes in a bridge configuration to obtain the pulsating dc and the capacitor is used as a filter element.	2M

MAHARASHTI (Autonomous) (ISO/IEC - 2700

rtified)


OUR GENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

.3		Attempt any THREE of the following:	12-Total Marks
	a)	Classify the power amplifiers on the basis of operation and input/output waveforms.	4M
	Ans:	 Depending upon the operation and input/output waveforms power amplifiers are classified into following type. 1) Class A amplifier. 2) Class B amplifier. 3) Class C amplifier. 4) Class AB amplifier. 5) Class D amplifier. 	Any 4 type 1M each
	b)	Describe the operation of class-C type of power amplifier with the help of neat sketch.	4M
	Ans:	 Circuit diagram: Operation: Class C power amplifier is a type of amplifier where the transistor conducts for less than one half cycle of the input signal. Less than one half cycles means the conduction angle is less than 180° and its typical value is 80° to 120°. Biasing resistor R_b pulls the base of Q₁ further downwards and the Q-point will be set below the cut-off point in the DC load line. As a result the transistor will start conducting only after the input signal amplitude has risen above the base emitter voltage (Vbe~0.7V) plus the downward bias voltage caused by R_b. That is the reason why the major portion of the input signal is absent in the output signal. Inductor L₁ and capacitor C₁ forms a tank circuit which is used in the extraction of the required signal from the pulsed output of the transistor. Values of L1 and C₁ are so selected that the resonant circuit oscillates in the frequency of the input signal. Since the resonant circuit oscillates in one frequency (generally the carrier frequency) all other frequencies are attenuated. 	2M 2M
	c)	Justify the need of current time base generator to obtain the specified sawtooth waveform with one example.	4 M
	Ans:	 Justification:- Current Time base generator is a circuit where the output current is a linear function of time over a specified time interval. Time base circuits are used by radar systems to determine range to a target, by comparing the current location along the time base to the time of arrival of radio 	Justification 2M, Waveform

- **Example:**
- A cathode ray tube (CRT) consists of three primary parts, the electron gun that provides a stream of accelerated electrons, the phosphor-covered screen that lights up when the electrons hit it, and the deflection plates that use magnetic or electric fields to deflect the electrons in-flight and allows them to be directed around the screen.
- It is the ability for the electron stream to be rapidly moved using the deflection plates that allow the CRT to be used to display very rapid signals.
- To display such a signal on an oscilloscope for examination, it is desirable to have the electron beam sweep across the screen so that the electron beam cycles at the same frequency as the carrier, or some multiple of that base frequency.
- This is the purpose of the current time base generator, which is attached to one of the set of deflection plates, normally the X axis, while the amplified output of the radio signal is sent to the other axis, normally Y. The result is a visual re-creation of the original waveform.

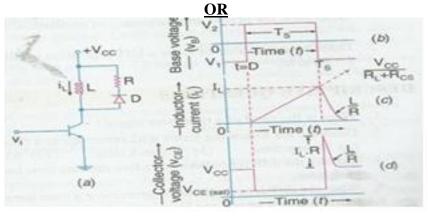
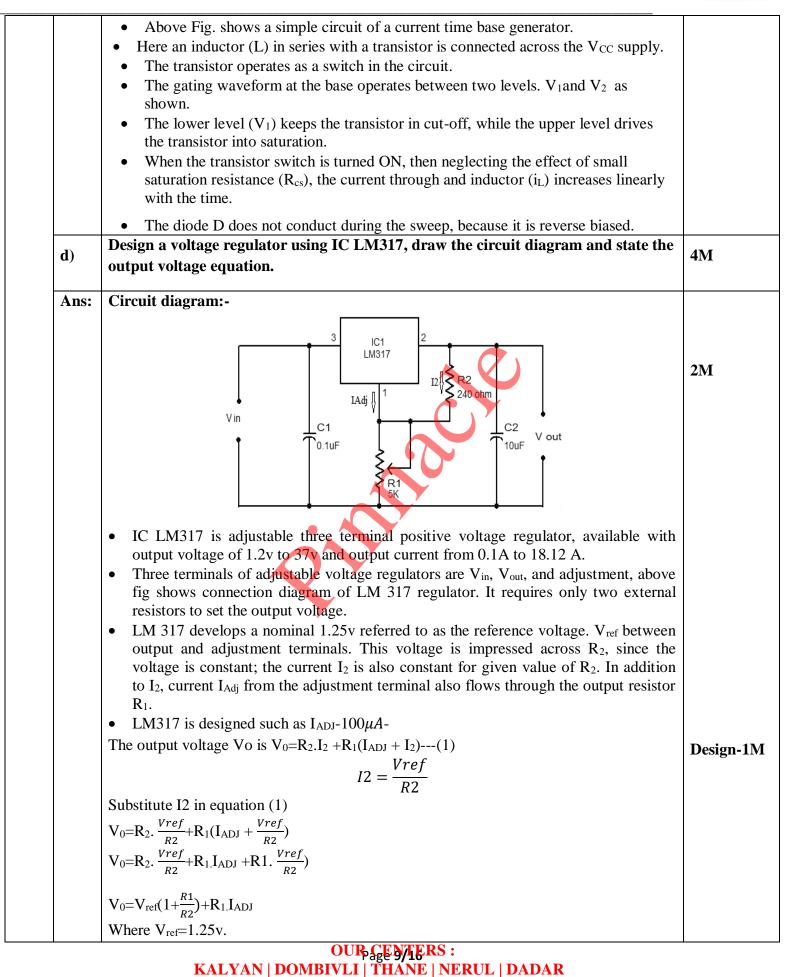
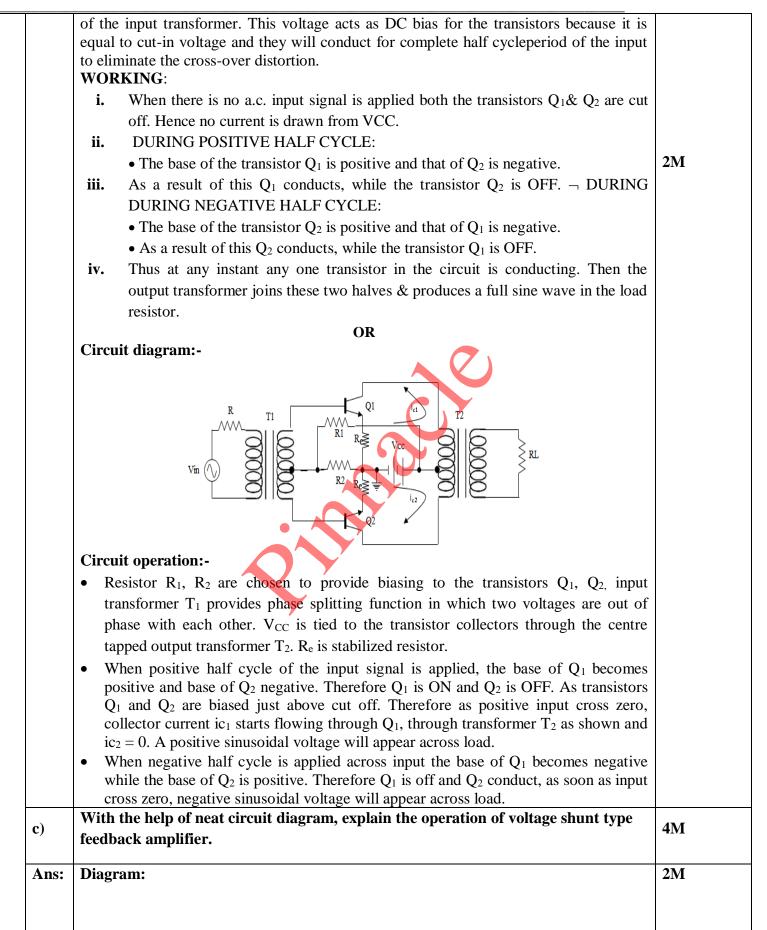



Fig: A current time base circuit.

OUR CENTERS : KALYAN | DOMBIVLI | THÂNE | NERUL | DADAR Contact - 9136008228


Contact - 9136008228

1	However the current IADJ is very small and constant. Therefore the voltage drop across R2 due to IADJ is also very small and can be neglected.	
	Therefore	
	$V_0=1.25.(1+\frac{R_1}{R_2})$	Output
	The output is a function of R_1 for a given value of R_2 and can be varied by adjusting the value of R_1 . The resistor R_2 usually is 240 ohm. Normally no capacitor is needed unless the LM317 is situated far from the power supply filter capacitor.	equation 1M
4	Attempt any THREE of the following :	12-Total Marks
a)	Draw the two stage BJT amplifier. State the formula for overall gain of this amplifier.	4M
Ans	: Diagram:	3M
b)	Vic Vic Vin FRI Vin R2 Rel Cel Rel Rel Vin R2 Rel Cel Rel Rel Vin Vin R2 Rel Rel Cel Rel Cel<	Formula 1M 4M
An		
Ans	Find the under and the constant of two center-tapped transformers T_1 and T_2 , two identical transistors Q_1 and Q_2 , Resistor R and diode D. The DC voltage developed across the	2M

Contact - 9136008228

BOARD OF TECHNICAL EDUCATION

rtified)

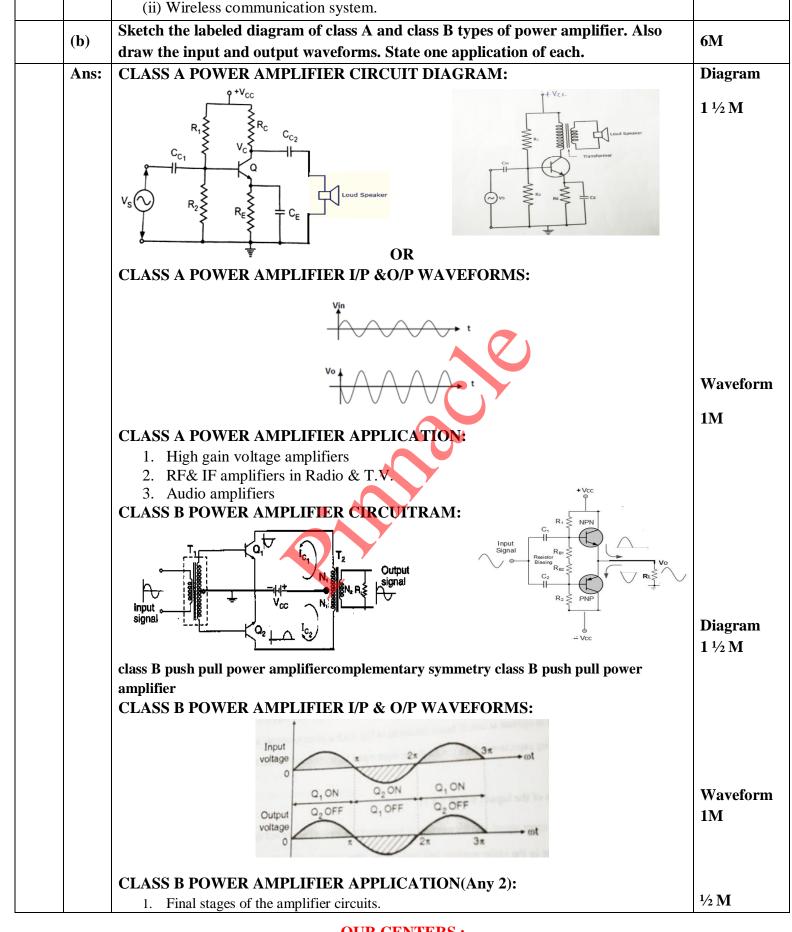
MAHARASHTI (Autonomous) (ISO/IEC - 2700

	between its of signal is app (out of phase	outpu lied to e with e feed	on emitter transistor amplifier v t and input terminals. This is co to the input then amplified output input) with the input. back current is given by –	llector to base biasing when	the input	Explanatio n 2M
			the output voltage to gara than		to zero	
	therefore it is negative feed	s volt dback		shunt type therefore it voltag		
d)	therefore it is negative feed	s volt dback	age feedback. As $I_s = I_f + I_i$ it is	shunt type therefore it voltag		4M
d) Ans:	therefore it is negative feed Compare be	s volt dback e twee	age feedback. As $I_S = I_f + I_i$ it is amplifier.	shunt type therefore it voltag		Any 4
,	therefore it is negative feed Compare be (Note: Any o	s volt dback etwee other Sr.	age feedback. As $I_S = I_f + I_i$ it is amplifier. n RC phase shift oscillator and	shunt type therefore it voltag		Any 4 points 1M
,	therefore it is negative feed Compare be (Note: Any o	s volt dback etwee other	age feedback. As $I_S = I_f + I_i$ it is amplifier. n RC phase shift oscillator and relevant point also can be con	shunt type therefore it voltag		Any 4 points
,	therefore it is negative feed Compare be (Note: Any of Note: Any of	s volt dback etwee other Sr.	age feedback. As $I_S = I_f + I_i$ it is amplifier. n RC phase shift oscillator and relevant point also can be con RC phase shift oscillator This oscillator is used for low frequency range. Used resistor and capacitor network to decide frequency of oscillator.	shunt type therefore it voltag crystal oscillator. sidered.) Crystal oscillator Quartz crystal is mainly used in radio-frequency		Any 4 points 1M
,	therefore it is negative feed Compare be (Note: Any of 1	s volt dback etwee other Sr.	age feedback. As $I_S = I_f + I_i$ it is amplifier. n RC phase shift oscillator and relevant point also can be con RC phase shift oscillator This oscillator is used for low frequency range. Used resistor and capacitor network to decide frequency	shunt type therefore it voltag crystal oscillator. sidered.) Quartz crystal is mainly used in radio-frequency (RF) oscillators Crystal decides the		Any 4 points 1M
,	therefore it is negative feed Compare be (Note: Any of 1 1 2	s volt dback etwee other Sr.	age feedback. As $I_S = I_f + I_i$ it is amplifier. n RC phase shift oscillator and relevant point also can be con RC phase shift oscillator This oscillator is used for low frequency range. Used resistor and capacitor network to decide frequency of oscillator. RC phase shift oscillators are	shunt type therefore it voltage I crystal oscillator. sidered.) Crystal oscillator Quartz crystal is mainly used in radio-frequency (RF) oscillators Crystal decides the frequency of oscillator. crystal oscillators are		Any 4 points 1M
,	therefore it is negative feed Compare be (Note: Any of 1 2 3 4	s volt dback etwee other Sr. No.	age feedback. As $I_S = I_f + I_i$ it is amplifier. n RC phase shift oscillator and relevant point also can be con RC phase shift oscillator This oscillator is used for low frequency range. Used resistor and capacitor network to decide frequency of oscillator. RC phase shift oscillators are comparatively less stable. RC network is used as	shunt type therefore it voltage I crystal oscillator. sidered.) Crystal oscillator Quartz crystal is mainly used in radio-frequency (RF) oscillators Crystal decides the frequency of oscillator. Crystal oscillators are highly stable Crystal is connected in feedback.	ge shunt	Any 4 points 1M
Ans:	therefore it is negative feed Compare be (Note: Any of 1 2 3 4 Compare th	s volt dback etwee other Sr. No.	age feedback. As $I_S = I_f + I_i$ it is amplifier. n RC phase shift oscillator and relevant point also can be con RC phase shift oscillator This oscillator is used for low frequency range. Used resistor and capacitor network to decide frequency of oscillator. RC phase shift oscillators are comparatively less stable. RC network is used as feedback network.	shunt type therefore it voltage I crystal oscillator. sidered.) Crystal oscillator Quartz crystal is mainly used in radio-frequency (RF) oscillators Crystal decides the frequency of oscillator. Crystal oscillators are highly stable Crystal is connected in feedback. X and 79XX.(any four poi	ge shunt	Any 4 points 1M each point

OUB_aGENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

" rtified)

			Sr. No.	78xx	79xx	point		
			1	It produces positive fixed	It produces negative			
			1	DC voltage values,	fixed DC voltage values			
				IC 78xx (7805, 7806, 7808,	IC 79xx (7905,			
			2	7812, 7815, 7818,7824)-	7906,7908,7912, 7915) -			
				Positive Voltage Regulator.	Negative Voltage Regulator			
			3	Output current is 1A	Output current is 1.5A			
			5					
				1 IC 3 Input 78XX Output	2 IC 3 Input 79XX Output			
			4	Ground				
				1-Input	OR 1 Council			
				2-Ground	1-Ground			
				3-Output	2-Input 3-Output			
0.5						10		
Q.5			·	O of the following		12 Total Marks		
	(a)		-	ration of double tuned amplif ntion its applications.	fier with the help of neat circuit	6M		
	Ans:	Circuit dia				2M		
			0	the second se				
		$C_{1} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} \begin{bmatrix} c_{2} \\ c_{2} \\ c_{2} \\ c_{3} \end{bmatrix} \begin{bmatrix} c_{2} \\ c_{2} \\ c_{3} \end{bmatrix} \begin{bmatrix} c_{2} \\ c_{2} \\ c_{3} \end{bmatrix} \begin{bmatrix} c_{3} \\ c_{3} \\ c_{3} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{3} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{3} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{4} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{4} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{4} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{4} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{4} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{4} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{4} \end{bmatrix} \begin{bmatrix} c_{4} \\ c_{4} \\ c_{4} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c_{4} $						
					-			
		Operation	:					
		- The signal to be amplified is applied at the input terminal through the coupling capacitor $C_{\rm C}$						
				rrequency of the tuned circuit	$L_1 C_1$ is made equal to that of tun	ed		
		circuit 1Under		conditions the tuned circuit of	fers avery high impedance to the inp	aut		
					put appears across the tuned circu			
				inductively coupled to the L_2C_2		1M each		
		Applicatio						
	1			T.V broadcasting as tuning cir		1		


OUB CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

MAHARASHTF


(ISO/IEC - 2700

(Autonomous)

OUBage 1475 COUBAGE 1475 COUBAGE 1475 CONTACT - 9136008228

BOARD OF TECHNICAL EDUCATION

/IEC - 2700 rtified)

		 In public address systems (PA system) In tape recorders and music system In T.V receivers 	
	(c)	4. In 1. V receivers Draw the neat labelled diagram of miller sweep generator and mention its two applications.	6M
	Ans:	Circuit Diagram:	4M
		R_{B2} C R_{C} V_{O} + Vcc	
		 Applications (Any Two): In Television (TV) In CRO To convert step waveform into ramp waveform. 	1M each
Q.6		Attempt any TWO of the following:	12Total
Q.0			Marks
	(a)	For a BJT ac amplifier, with a midband voltage gain of 200, if the cutoff frequencies are $f_1=20$ Hz and $f_2=20$ KHz.Draw the frequency response for amplifier. Draw the frequency response in case of mid gain of 100 and $f_1=500$ Hz to $f_2=5$ KHz.	6 M
	Ans:	 (i) Frequency response for amplifier with mid-band voltage gain of 200, if the cutoff frequencies are f₁=20Hz and f₂= 20KHz. Voltage gain A 	3M
		the cutoff frequencies are f_1 =500Hz and f_2 = 5KHz.	3M

(Autonomous) (ISO/IEC - 2700 rtified)

MAHARASHTI

ī

-

	Voltage gain A, 100 0 500HZ 5 KHZ Frequency	
	Draw a class AB push pull amplifier and comment on its usefulness in the output	
(b)	stage as compared to other power amplifiers and the relationship between	6M
Ans:	maximum transistor power dissipation w.r.t the supply voltage. CLASS AB Push – Pull Amplifier circuit diagram:	3M
	Driver Vin C Vin C V	
	 Usefulness as compared to other power amplifiers: 1. Efficiency more than Class A power amplifier 2. Cross over distortion is eliminated as compared to Class B power amplifier. Relationship between maximum transistor power dissipation w.r.t the supply 	2M
	voltage: $P_{D} = Pi(DC) - Po(A.C.)$ $= \frac{2VCC*Im}{\pi} - \frac{Vm*Im}{2}$ Comment on the effect of negative feedback on the gain, input and output	1M
(c)	resistance of the feedback amplifiers.Describe the gain bandwidth product term used in this context and its importance.	6M
Ans:	Effect of negative feedback:	3M
	 Gain decreases with negative feedback. Input resistance increases with negative feedback. Output resistance decreases with negative feedback. Explanation of significance of Gain bandwidth product Bandwidth measure at 3db voltage gain. As Gain and bandwidth product is always constant, and it is unity gain bandwidth. 	Explanati n 3M
	• The gain decreases with negative feedback bandwidth increases which means it is stable output on more range of frequency.	

OUB GENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228